MATH 2010B Advanced Calculus I, 2014-15 QUIZ 3

Honesty in Academic Work: The Chinese University of Hong Kong places very high importance on honesty in academic work submitted by students, and adopts a policy of zero tolerance on cheating and plagiarism. Any related offence will lead to disciplinary action including termination of studies at the University.

NAME: \qquad ID: \qquad

Instruction: Answer ALL questions and show your work with explanation.
Question 1: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{2 x y^{2}}{x^{2}+y^{4}} & \text { when }(x, y) \neq(0,0) \\
0 & \text { when }(x, y)=(0,0)
\end{array}\right.
$$

(a) (5 points) Compute the directional derivative $D_{\mathbf{u}} f(0,0)$ for the direction $\mathbf{u}=$ $(\cos \theta, \sin \theta)$ at the origin $(0,0)$.

Answer:
(b) (5 points) Is f differentiable at $(0,0)$? Explain clearly your answer.

Answer:
(c) (6 points) Find all the points $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ where $\nabla f\left(x_{0}, y_{0}\right)=\mathbf{0}$. Sketch the set

$$
S=\left\{(x, y) \in \mathbb{R}^{2}: \nabla f\left(x_{0}, y_{0}\right)=\mathbf{0}\right\}
$$

Answer:

(d) (4 points) Let $\gamma(t)=\left(\cos ^{2} t,(1+t)^{100}\right), t \in \mathbb{R}$. Compute the derivative $\left.\frac{d}{d t}\right|_{t=0} f(\gamma(t))$. Answer:

